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History

In 1932 von Neumann proved that hidden-variables theory
cannot exit

Third of a century later (in 1966) Bell noticed that von
Neumann’s proof relied on unreasonable assumption

Bell constructed hidden-variables model for a single qubit

Bell also proved two no hidden variables theorems
1 Bell-Kochen-Specker theorem which we will call simply

Kochen-Specker theorem (1967)
2 Bell theorem, which we have seen in class

In this talk

We will consider proofs of several versions of Kochen-Specker
theorem and games that are based on these proofs.
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Observables

Observable is just a different way of describing projective
measurement with respect to some basis B or in general with
respect to a complete set of orthogonal subspaces.

Measurement described by an observable

Observable M is a Hermitian operator. If

M =
∑

λPλ

is a spectral decomposition of M, then M defines a projective
measurement in the following way:

the outcome of the measurement is an eigenvalue λ of M ,

the state collapses to the corresponding eigenspace Pλ.
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Commuting observables

Definition

Observables A and B are said to commute if

AB = BA

Theorem

If mutually commuting observables A1, A2, . . . , An satisfy some
functional identity

f(A1, A2, . . . , An) = 0,

then the values assigned to them in an individual system must also
be related by

f

(
v(A1), v(A2), . . . , v(An)

)
= 0
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Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables
for which it is impossible to assign outcomes in a way consistent
with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of
commuting observables

f(A1, A2, · · · , An) = 0,

then it is also satisfied by values assigned to these observables in
each individual system

f

(
v(A1), v(A2), · · · , v(An)

)
= 0.

Consequences of Kochen-Specker theorem

Every non-contextual hidden variables theory is inconsistent with
quantum mechanics formalism.
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Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables
for which it is impossible to assign values in a way consistent with
quantum mechanics formalism.

Consider a set of observables {Sv}v∈V⊂R3

Observable Sv measures the square of spin component of a
spin 1 particle along direction v ∈ R3

The outcomes (eigenvalues) of the measurement Sv are 1 or 0

If {u, v, w} are mutually orthogonal vectors in R3, then
1 {Su, Sv, Sw} is a set of mutually commuting observables
2 Su + Sv + Sw = 2I =⇒ v(Su) + v(Sv) + v(Sw) = 2.
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The task of proving Kochen-Specker theorem can be reduced to
the following problem

Find a set of vectors in R3 for which it is impossible to assign “0”
and “1” (outcomes of observables Sv) so that in each set of three
mutually orthogonal vectors “1” is assigned to exactly two of
them.

1 Kochen and Specker (1967) found the required set with 117
vectors

2 Later Conway and Kochen reduced the set to 31 vectors

3 Peres (1991) found the required set with 33 vectors (with nice
symmetries)
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Magic configuration

Although it is not obvious, this set satisfies the required property.
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M.C.Escher “Waterfall”
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Kochen-Specker game

Setting of the game

Alice and Bob plays against verifier

No communication between Alice and Bob after the input
from verifier is received

As always we will see that entanglement turns out to be the key
trick in quantum strategy.



Introduction Kochen-Specker game Magic square Magic star

Kochen-Specker game

Setting of the game

Alice and Bob plays against verifier

No communication between Alice and Bob after the input
from verifier is received

As always we will see that entanglement turns out to be the key
trick in quantum strategy.



Introduction Kochen-Specker game Magic square Magic star

Kochen-Specker game

Setting of the game

Alice and Bob plays against verifier

No communication between Alice and Bob after the input
from verifier is received

As always we will see that entanglement turns out to be the key
trick in quantum strategy.



Introduction Kochen-Specker game Magic square Magic star

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in R3 from some proof of KS theorem
(e.g. three superimposed cubes).

Verifier chooses three mutually orthogonal vectors vi, vj , vk

from the set V . He asks

Alice to assign “0” or “1” to each of these vectors
Bob to assign “0” or “1” to a vector vl ∈ {vi, vj , vk}

Alice and Bob win if

Parity rule: “1” gets assigned to exactly two of the three
vectors
Consistency rule: Alice and Bob assigns the same values to
vector vl

Alice and Bob cannot always win if they use classical strategy
as this would lead to violation of KS theorem.

Yet they can win using quantum strategy with entanglement.
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Quantum strategy for KS game

Alice and Bob share the state |Ψ〉 = 1√
3
(|00〉+ |11〉+ |22〉).

1 Alice measures her qutrit with POVM
{|vi〉 〈vi| , |vj〉 〈vj | , |vk〉 〈vk|}. She assigns “0” to the vector
corresponding to the outcome of her measurement and “1” to
the rest two vectors.

2 Bob measures with POVM {|vl〉 〈vl| , I − |vl〉 〈vl|}. He assigns
“0” to vector vl if the state collapses to |vl〉 and “1” if
otherwise.

We need to check whether parity and consistency rules are always
satisfied.
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Kochen-Specker theorem (4 dimensional version)

In a Hilbert space of dimension ≥ 4 there is a set of observables
for which it is impossible to assign outcomes in a way consistent
with quantum mechanics formalism.

4 dimensional Hilbert space corresponds to two qubit system

Again we will construct a set of observables that satisfy some
functional identities that cannot be satisfied by the values
assigned to them.
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Magic square

Multiplication of Pauli matrices. Magic square.

Observables on each row and column are mutually commuting.

It is impossible to fill in the outcomes of observables so that
functional identities are satisfied.
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Game

Verifier asks Alice to fill in some row and Bob to
fill some column with “1” or “-1”

Alice and Bob win if

Parity rule The parity of “-1” is even for Alice
and odd for Bob
Consistency rule Alice and Bob assign the same
value to the intersection

There is no perfect classical strategy.

Quantum strategy

Alice and Bob share |Ψ〉 =
(

1√
2
(|00〉+ |11〉)

)⊗2

Alice (Bob) measures her part of |Ψ〉 with the observables on
the corresponding row (column) and gives verifier the
outcomes of her measurement.

We have to check whether parity and consistency rules hold.
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Consistency rule verification

Let B = {|b1〉 , |b2〉 , |b3〉 , |b4〉} be a basis of Alice’s state
space (2 qubits) and B = {|b1〉, |b2〉, |b3〉, |b4〉} be a basis of
Bob’s state space.

It turns out that |Ψ〉 =
(

1√
2
(|00〉+ |11〉)

)⊗2
in these basis

can be written as:

|Ψ〉 =
1
4

(
|b1〉 |b1〉+ |b2〉 |b2〉+ |b3〉 |b3〉+ |b4〉 |b4〉

)

Also it can be shown that the eigenvectors of observables
being measured are real, therefore B = B and Bob will get the
same outcome as Alice.
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Let B = {|b1〉 , |b2〉 , |b3〉 , |b4〉} be a basis of Alice’s state
space (2 qubits) and B = {|b1〉, |b2〉, |b3〉, |b4〉} be a basis of
Bob’s state space.

It turns out that |Ψ〉 =
(

1√
2
(|00〉+ |11〉)

)⊗2
in these basis

can be written as:

|Ψ〉 =
1
4

(
|b1〉 |b1〉+ |b2〉 |b2〉+ |b3〉 |b3〉+ |b4〉 |b4〉

)

Also it can be shown that the eigenvectors of observables
being measured are real, therefore B = B and Bob will get the
same outcome as Alice.
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