Kochen-Specker theorem and games

Laura Mancinska

University of Waterloo,
Department of C\&O
December 13, 2007

Hidden variables

$$
\begin{array}{ll}
v\left(A_{1}\right)=0, & v\left(A_{2}\right)=1, \\
v\left(A_{3}\right)=1, & \cdots
\end{array}
$$

0

$$
\begin{aligned}
& v\left(A_{1}\right)=1, \quad v\left(A_{2}\right)=1, \\
& v\left(A_{3}\right)=0, \quad \ldots
\end{aligned}
$$

,

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems
(1) Bell-Kochen-Specker theorem which we will call simply Kochen-Specker theorem (1967)

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems
(1) Bell-Kochen-Specker theorem which we will call simply Kochen-Specker theorem (1967)
(2) Bell theorem, which we have seen in class

History

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems
(1) Bell-Kochen-Specker theorem which we will call simply Kochen-Specker theorem (1967)
(2) Bell theorem, which we have seen in class

In this talk

We will consider proofs of several versions of Kochen-Specker theorem and games that are based on these proofs.

Observables

Observable is just a different way of describing projective measurement with respect to some basis \mathcal{B} or in general with respect to a complete set of orthogonal subspaces.

Observables

Observable is just a different way of describing projective measurement with respect to some basis \mathcal{B} or in general with respect to a complete set of orthogonal subspaces.

Measurement described by an observable
Observable M is a Hermitian operator.

Observables

Observable is just a different way of describing projective measurement with respect to some basis \mathcal{B} or in general with respect to a complete set of orthogonal subspaces.

Measurement described by an observable
Observable M is a Hermitian operator. If

$$
M=\sum \lambda P_{\lambda}
$$

is a spectral decomposition of M , then M defines a projective measurement in the following way:

- the outcome of the measurement is an eigenvalue λ of M,
- the state collapses to the corresponding eigenspace P_{λ}.

Commuting observables

Definition
Observables A and B are said to commute if

$$
A B=B A
$$

Commuting observables

Definition

Observables A and B are said to commute if

$$
A B=B A
$$

Theorem

If mutually commuting observables $A_{1}, A_{2}, \ldots, A_{n}$ satisfy some functional identity

$$
f\left(A_{1}, A_{2}, \ldots, A_{n}\right)=0
$$

then the values assigned to them in an individual system must also be related by

$$
f\left(v\left(A_{1}\right), v\left(A_{2}\right), \ldots, v\left(A_{n}\right)\right)=0
$$

Kochen-Specker theorem (3 dimensional version)
In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)
In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of commuting observables

$$
f\left(A_{1}, A_{2}, \cdots, A_{n}\right)=0
$$

then it is also satisfied by values assigned to these observables in each individual system

$$
f\left(v\left(A_{1}\right), v\left(A_{2}\right), \cdots, v\left(A_{n}\right)\right)=0
$$

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of commuting observables

$$
f\left(A_{1}, A_{2}, \cdots, A_{n}\right)=0,
$$

then it is also satisfied by values assigned to these observables in each individual system

$$
f\left(v\left(A_{1}\right), v\left(A_{2}\right), \cdots, v\left(A_{n}\right)\right)=0
$$

Consequences of Kochen-Specker theorem

Every non-contextual hidden variables theory is inconsistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of commuting observables

$$
f\left(A_{1}, A_{2}, \cdots, A_{n}\right)=0,
$$

then it is also satisfied by values assigned to these observables in each individual system

$$
f\left(v\left(A_{1}\right), v\left(A_{2}\right), \cdots, v\left(A_{n}\right)\right)=0
$$

Consequences of Kochen-Specker theorem

Every non-contextual hidden variables theory is inconsistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\left\{S_{v}\right\}_{v \in V \subset \mathbb{R}^{3}}$

- Observable S_{v} measures the square of spin component of a spin 1 particle along direction $v \in \mathbb{R}^{3}$

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\left\{S_{v}\right\}_{v \in V \subset \mathbb{R}^{3}}$

- Observable S_{v} measures the square of spin component of a spin 1 particle along direction $v \in \mathbb{R}^{3}$
- The outcomes (eigenvalues) of the measurement S_{v} are 1 or 0

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\left\{S_{v}\right\}_{v \in V \subset \mathbb{R}^{3}}$

- Observable S_{v} measures the square of spin component of a spin 1 particle along direction $v \in \mathbb{R}^{3}$
- The outcomes (eigenvalues) of the measurement S_{v} are 1 or 0
- If $\{u, v, w\}$ are mutually orthogonal vectors in \mathbb{R}^{3}, then
(1) $\left\{S_{u}, S_{v}, S_{w}\right\}$ is a set of mutually commuting observables
(2) $S_{u}+S_{v}+S_{w}=2 I$

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension ≥ 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\left\{S_{v}\right\}_{v \in V \subset \mathbb{R}^{3}}$

- Observable S_{v} measures the square of spin component of a spin 1 particle along direction $v \in \mathbb{R}^{3}$
- The outcomes (eigenvalues) of the measurement S_{v} are 1 or 0
- If $\{u, v, w\}$ are mutually orthogonal vectors in \mathbb{R}^{3}, then
(1) $\left\{S_{u}, S_{v}, S_{w}\right\}$ is a set of mutually commuting observables
(2) $S_{u}+S_{v}+S_{w}=2 I \Longrightarrow v\left(S_{u}\right)+v\left(S_{v}\right)+v\left(S_{w}\right)=2$.

The task of proving Kochen-Specker theorem can be reduced to the following problem

Find a set of vectors in \mathbb{R}^{3} for which it is impossible to assign " 0 " and " 1 " (outcomes of observables S_{v}) so that in each set of three mutually orthogonal vectors " 1 " is assigned to exactly two of them.

The task of proving Kochen-Specker theorem can be reduced to the following problem

Find a set of vectors in \mathbb{R}^{3} for which it is impossible to assign " 0 " and " 1 " (outcomes of observables S_{v}) so that in each set of three mutually orthogonal vectors " 1 " is assigned to exactly two of them.
(1) Kochen and Specker (1967) found the required set with 117 vectors

The task of proving Kochen-Specker theorem can be reduced to the following problem

Find a set of vectors in \mathbb{R}^{3} for which it is impossible to assign " 0 " and " 1 " (outcomes of observables S_{v}) so that in each set of three mutually orthogonal vectors " 1 " is assigned to exactly two of them.
(1) Kochen and Specker (1967) found the required set with 117 vectors
(2) Later Conway and Kochen reduced the set to 31 vectors

The task of proving Kochen-Specker theorem can be reduced to the following problem

Find a set of vectors in \mathbb{R}^{3} for which it is impossible to assign " 0 " and " 1 " (outcomes of observables S_{v}) so that in each set of three mutually orthogonal vectors " 1 " is assigned to exactly two of them.
(1) Kochen and Specker (1967) found the required set with 117 vectors
(2) Later Conway and Kochen reduced the set to 31 vectors
(3) Peres (1991) found the required set with 33 vectors (with nice symmetries)

Magic configuration

Although it is not obvious, this set satisfies the required property.

M.C.Escher "Waterfall"

Kochen-Specker game

Setting of the game

- Alice and Bob plays against verifier

Kochen-Specker game

Setting of the game

- Alice and Bob plays against verifier
- No communication between Alice and Bob after the input from verifier is received

Kochen-Specker game

Setting of the game

- Alice and Bob plays against verifier
- No communication between Alice and Bob after the input from verifier is received

As always we will see that entanglement turns out to be the key trick in quantum strategy.

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^{3} from some proof of KS theorem (e.g. three superimposed cubes).

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^{3} from some proof of KS theorem (e.g. three superimposed cubes).

- Verifier chooses three mutually orthogonal vectors v_{i}, v_{j}, v_{k} from the set V. He asks
- Alice to assign " 0 " or " 1 " to each of these vectors
- Bob to assign " 0 " or " 1 " to a vector $v_{l} \in\left\{v_{i}, v_{j}, v_{k}\right\}$

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^{3} from some proof of KS theorem (e.g. three superimposed cubes).

- Verifier chooses three mutually orthogonal vectors v_{i}, v_{j}, v_{k} from the set V. He asks
- Alice to assign " 0 " or " 1 " to each of these vectors
- Bob to assign " 0 " or " 1 " to a vector $v_{l} \in\left\{v_{i}, v_{j}, v_{k}\right\}$
- Alice and Bob win if
- Parity rule: " 1 " gets assigned to exactly two of the three vectors
- Consistency rule: Alice and Bob assigns the same values to vector v_{l}

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^{3} from some proof of KS theorem (e.g. three superimposed cubes).

- Verifier chooses three mutually orthogonal vectors v_{i}, v_{j}, v_{k} from the set V. He asks
- Alice to assign " 0 " or " 1 " to each of these vectors
- Bob to assign " 0 " or " 1 " to a vector $v_{l} \in\left\{v_{i}, v_{j}, v_{k}\right\}$
- Alice and Bob win if
- Parity rule: " 1 " gets assigned to exactly two of the three vectors
- Consistency rule: Alice and Bob assigns the same values to vector v_{l}
- Alice and Bob cannot always win if they use classical strategy as this would lead to violation of KS theorem.

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^{3} from some proof of KS theorem (e.g. three superimposed cubes).

- Verifier chooses three mutually orthogonal vectors v_{i}, v_{j}, v_{k} from the set V. He asks
- Alice to assign " 0 " or " 1 " to each of these vectors
- Bob to assign " 0 " or " 1 " to a vector $v_{l} \in\left\{v_{i}, v_{j}, v_{k}\right\}$
- Alice and Bob win if
- Parity rule: " 1 " gets assigned to exactly two of the three vectors
- Consistency rule: Alice and Bob assigns the same values to vector v_{l}
- Alice and Bob cannot always win if they use classical strategy as this would lead to violation of KS theorem.
- Yet they can win using quantum strategy with entanglement.

Quantum strategy for KS game

Alice and Bob share the state $|\Psi\rangle=\frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle)$.
(1) Alice measures her qutrit with POVM $\left\{\left|v_{i}\right\rangle\left\langle v_{i}\right|,\left|v_{j}\right\rangle\left\langle v_{j}\right|,\left|v_{k}\right\rangle\left\langle v_{k}\right|\right\}$. She assigns "0" to the vector corresponding to the outcome of her measurement and " 1 " to the rest two vectors.
(2) Bob measures with POVM $\left\{\left|v_{l}\right\rangle\left\langle v_{l}\right|, I-\left|v_{l}\right\rangle\left\langle v_{l}\right|\right\}$. He assigns " 0 " to vector v_{l} if the state collapses to $\left|v_{l}\right\rangle$ and " 1 " if otherwise.

Quantum strategy for KS game

Alice and Bob share the state $|\Psi\rangle=\frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle)$.
(1) Alice measures her qutrit with POVM $\left\{\left|v_{i}\right\rangle\left\langle v_{i}\right|,\left|v_{j}\right\rangle\left\langle v_{j}\right|,\left|v_{k}\right\rangle\left\langle v_{k}\right|\right\}$. She assigns "0" to the vector corresponding to the outcome of her measurement and " 1 " to the rest two vectors.
(2) Bob measures with POVM $\left\{\left|v_{l}\right\rangle\left\langle v_{l}\right|, I-\left|v_{l}\right\rangle\left\langle v_{l}\right|\right\}$. He assigns " 0 " to vector v_{l} if the state collapses to $\left|v_{l}\right\rangle$ and " 1 " if otherwise.

We need to check whether parity and consistency rules are always satisfied.

Kochen-Specker theorem (4 dimensional version)

In a Hilbert space of dimension ≥ 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (4 dimensional version)

In a Hilbert space of dimension ≥ 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (4 dimensional version)

In a Hilbert space of dimension ≥ 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

- 4 dimensional Hilbert space corresponds to two qubit system

Kochen-Specker theorem (4 dimensional version)

In a Hilbert space of dimension ≥ 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

- 4 dimensional Hilbert space corresponds to two qubit system
- Again we will construct a set of observables that satisfy some functional identities that cannot be satisfied by the values assigned to them.

Magic square

Multiplication of Pauli matrices.

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$
I	I	
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$
I		
$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$
y	I	

Magic square.

- Observables on each row and column are mutually commuting.

Magic square

X

I	$i Z$	$-i Y$
$-i Z$	I	$i X$
$i Y$	$-i X$	I

Multiplication of Pauli matrices.
-I \quad-I \quad-I

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$
I	I	
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$
I		
$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$
y	I	

Magic square.

- Observables on each row and column are mutually commuting.
- It is impossible to fill in the outcomes of observables so that functional identities are satisfied.

Game

- Verifier asks Alice to fill in some row and Bob to
$-\mathrm{I} \quad-\mathrm{I} \quad-\mathrm{I}$ fill some column with " 1 " or "-1"

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$
X	I	
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$
I		
$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$
I		

Game

- Verifier asks Alice to fill in some row and Bob to
$-\mathrm{I} \quad-\mathrm{I} \quad-\mathrm{I}$ fill some column with " 1 " or " 1 "
- Alice and Bob win if
- Parity rule The parity of " -1 " is even for Alice and odd for Bob
- Consistency rule Alice and Bob assign the same value to the intersection

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$	I
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$	I
$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$	I

Game

- Verifier asks Alice to fill in some row and Bob to
$-\mathrm{I} \quad-\mathrm{I} \quad-\mathrm{I}$ fill some column with " 1 " or " 1 "
- Alice and Bob win if
- Parity rule The parity of " -1 " is even for Alice and odd for Bob
- Consistency rule Alice and Bob assign the same value to the intersection
- There is no perfect classical strategy.

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$
X	I	
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$
I		
$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$
I		

Game

- Verifier asks Alice to fill in some row and Bob to $-\mathrm{I} \quad-\mathrm{I} \quad-\mathrm{I}$ fill some column with " 1 " or " 1 "
- Alice and Bob win if
- Parity rule The parity of " -1 " is even for Alice and odd for Bob
- Consistency rule Alice and Bob assign the same value to the intersection
- There is no perfect classical strategy.

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$
- $\mathrm{X} \otimes \mathrm{Z}$	-Z \otimes X	$\mathrm{Y} \otimes \mathrm{Y}$

Quantum strategy

- Alice and Bob share $|\Psi\rangle=\left(\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right)^{\otimes 2}$

Game

- Verifier asks Alice to fill in some row and Bob to
$-\mathrm{I} \quad-\mathrm{I} \quad-\mathrm{I}$ fill some column with " 1 " or " 1 "
- Alice and Bob win if
- Parity rule The parity of " -1 " is even for Alice and odd for Bob
- Consistency rule Alice and Bob assign the same value to the intersection
- There is no perfect classical strategy.

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$	I
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$	I
	$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$
I			

Quantum strategy

- Alice and Bob share $|\Psi\rangle=\left(\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right)^{\otimes 2}$
- Alice (Bob) measures her part of $|\Psi\rangle$ with the observables on the corresponding row (column) and gives verifier the outcomes of her measurement.

Game

- Verifier asks Alice to fill in some row and Bob to
$-\mathrm{I} \quad-\mathrm{I} \quad-\mathrm{I}$ fill some column with " 1 " or " 1 "
- Alice and Bob win if
- Parity rule The parity of " -1 " is even for Alice and odd for Bob
- Consistency rule Alice and Bob assign the same value to the intersection
- There is no perfect classical strategy.

$\mathrm{I} \otimes \mathrm{Z}$	$\mathrm{Z} \otimes \mathrm{I}$	$\mathrm{Z} \otimes \mathrm{Z}$	I
$\mathrm{X} \otimes \mathrm{I}$	$\mathrm{I} \otimes \mathrm{X}$	$\mathrm{X} \otimes \mathrm{X}$	I
	$\mathrm{X} \otimes \mathrm{Z}$	$-\mathrm{Z} \otimes \mathrm{X}$	$\mathrm{Y} \otimes \mathrm{Y}$
I			

Quantum strategy

- Alice and Bob share $|\Psi\rangle=\left(\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right)^{\otimes 2}$
- Alice (Bob) measures her part of $|\Psi\rangle$ with the observables on the corresponding row (column) and gives verifier the outcomes of her measurement.

We have to check whether parity and consistency rules hold.

Consistency rule verification

- Let $\mathcal{B}=\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle,\left|b_{4}\right\rangle\right\}$ be a basis of Alice's state space (2 qubits) and $\overline{\mathcal{B}}=\left\{\overline{\left|b_{1}\right\rangle}, \overline{\left|b_{2}\right\rangle}, \overline{\left|b_{3}\right\rangle}, \overline{\left|b_{4}\right\rangle}\right\}$ be a basis of Bob's state space.

Consistency rule verification

- Let $\mathcal{B}=\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle,\left|b_{4}\right\rangle\right\}$ be a basis of Alice's state space (2 qubits) and $\overline{\mathcal{B}}=\left\{\overline{\left|b_{1}\right\rangle}, \overline{\left|b_{2}\right\rangle}, \overline{\left|b_{3}\right\rangle}, \overline{\left|b_{4}\right\rangle}\right\}$ be a basis of Bob's state space.
- It turns out that $|\Psi\rangle=\left(\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right)^{\otimes 2}$ in these basis can be written as:

$$
|\Psi\rangle=\frac{1}{4}\left(\left|b_{1}\right\rangle \overline{\left|b_{1}\right\rangle}+\left|b_{2}\right\rangle \overline{\left|b_{2}\right\rangle}+\left|b_{3}\right\rangle \overline{\left|b_{3}\right\rangle}+\left|b_{4}\right\rangle \overline{\left|b_{4}\right\rangle}\right)
$$

Consistency rule verification

- Let $\mathcal{B}=\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle,\left|b_{3}\right\rangle,\left|b_{4}\right\rangle\right\}$ be a basis of Alice's state space (2 qubits) and $\overline{\mathcal{B}}=\left\{\overline{\left|b_{1}\right\rangle}, \overline{\left|b_{2}\right\rangle}, \overline{\left|b_{3}\right\rangle}, \overline{\left|b_{4}\right\rangle}\right\}$ be a basis of Bob's state space.
- It turns out that $|\Psi\rangle=\left(\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right)^{\otimes 2}$ in these basis can be written as:

$$
|\Psi\rangle=\frac{1}{4}\left(\left|b_{1}\right\rangle \overline{\left|b_{1}\right\rangle}+\left|b_{2}\right\rangle \overline{\left|b_{2}\right\rangle}+\left|b_{3}\right\rangle \overline{\left|b_{3}\right\rangle}+\left|b_{4}\right\rangle \overline{\left|b_{4}\right\rangle}\right)
$$

- Also it can be shown that the eigenvectors of observables being measured are real, therefore $\mathcal{B}=\overline{\mathcal{B}}$ and Bob will get the same outcome as Alice.

Magic star

© David N. Mermin, Hidden variables and the two theorems of John Bell Reviews of Modern Physics, 1993

R R. Cleve, P. Hoyer, B. Toner, J. Watrous, Consequences and Limits of Nonlocal Strategies, IEEE, 2004

击 P. K. Aravind, A Simple Demonstration of Bell's Theorem Involving Two Observers and no Probabilities or Inequalities, 2002

