Kochen-Specker theorem and games

Laura Mancinska

University of Waterloo, Department of C&O

December 13, 2007

Magic star

Hidden variables

• In 1932 von Neumann proved that hidden-variables theory cannot exit

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems
 - Bell-Kochen-Specker theorem which we will call simply Kochen-Specker theorem (1967)

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems
 - Bell-Kochen-Specker theorem which we will call simply Kochen-Specker theorem (1967)
 - 2 Bell theorem, which we have seen in class

- In 1932 von Neumann proved that hidden-variables theory cannot exit
- Third of a century later (in 1966) Bell noticed that von Neumann's proof relied on unreasonable assumption
- Bell constructed hidden-variables model for a single qubit
- Bell also proved two no hidden variables theorems
 - Bell-Kochen-Specker theorem which we will call simply Kochen-Specker theorem (1967)
 - 2 Bell theorem, which we have seen in class

In this talk

We will consider proofs of several versions of Kochen-Specker theorem and games that are based on these proofs.

Observables

Observable is just a different way of describing projective measurement with respect to some basis \mathcal{B} or in general with respect to a complete set of orthogonal subspaces.

Observables

Observable is just a different way of describing projective measurement with respect to some basis \mathcal{B} or in general with respect to a complete set of orthogonal subspaces.

Measurement described by an observable

Observable M is a Hermitian operator.

Observables

Observable is just a different way of describing projective measurement with respect to some basis \mathcal{B} or in general with respect to a complete set of orthogonal subspaces.

Measurement described by an observable

Observable M is a Hermitian operator. If

$$M = \sum \lambda P_{\lambda}$$

is a spectral decomposition of M, then M defines a projective measurement in the following way:

- the outcome of the measurement is an eigenvalue λ of M,
- the state collapses to the corresponding eigenspace P_λ.

Commuting observables

Definition

Observables A and B are said to commute if

AB = BA

Commuting observables

Definition

Observables \boldsymbol{A} and \boldsymbol{B} are said to commute if

AB = BA

Theorem

If mutually commuting observables A_1,A_2,\ldots,A_n satisfy some functional identity

$$f(A_1, A_2, \ldots, A_n) = 0,$$

then the values assigned to them in an individual system must also be related by

$$f\bigg(v(A_1), v(A_2), \dots, v(A_n)\bigg) = 0$$

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

Kochen-Specker theorem (3 dimensional version)

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of commuting observables

$$f(A_1, A_2, \cdots, A_n) = 0,$$

then it is also satisfied by values assigned to these observables in each individual system

$$f\bigg(v(A_1), v(A_2), \cdots, v(A_n)\bigg) = 0.$$

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of commuting observables

$$f(A_1, A_2, \cdots, A_n) = 0,$$

then it is also satisfied by values assigned to these observables in each individual system

$$f\bigg(v(A_1), v(A_2), \cdots, v(A_n)\bigg) = 0.$$

Consequences of Kochen-Specker theorem

Every non-contextual hidden variables theory is inconsistent with quantum mechanics formalism.

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a way that if some functional relation is satisfied by a set of commuting observables

$$f(A_1, A_2, \cdots, A_n) = 0,$$

then it is also satisfied by values assigned to these observables in each individual system

$$f\bigg(v(A_1), v(A_2), \cdots, v(A_n)\bigg) = 0.$$

Consequences of Kochen-Specker theorem

Every non-contextual hidden variables theory is inconsistent with quantum mechanics formalism.

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\{S_v\}_{v \in V \subset \mathbb{R}^3}$

• Observable S_v measures the square of spin component of a spin 1 particle along direction $v\in \mathbb{R}^3$

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\{S_v\}_{v \in V \subset \mathbb{R}^3}$

- Observable S_v measures the square of spin component of a spin 1 particle along direction $v\in\mathbb{R}^3$
- The outcomes (eigenvalues) of the measurement S_v are 1 or 0

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\{S_v\}_{v \in V \subset \mathbb{R}^3}$

- Observable S_v measures the square of spin component of a spin 1 particle along direction $v\in \mathbb{R}^3$
- The outcomes (eigenvalues) of the measurement S_v are 1 or 0
- If $\{u,v,w\}$ are mutually orthogonal vectors in $\mathbb{R}^3,$ then
 - $\{S_u, S_v, S_w\} \text{ is a set of mutually commuting observables } \\ (2) S_u + S_v + S_w = 2I$

In a Hilbert space of dimension \geq 3 there is a set of observables for which it is impossible to assign values in a way consistent with quantum mechanics formalism.

Consider a set of observables $\{S_v\}_{v \in V \subset \mathbb{R}^3}$

- Observable S_v measures the square of spin component of a spin 1 particle along direction $v\in \mathbb{R}^3$
- The outcomes (eigenvalues) of the measurement S_v are 1 or 0
- $\bullet~$ If $\{u,v,w\}$ are mutually orthogonal vectors in $\mathbb{R}^3,$ then
 - $\textcircled{\ } \{S_u,S_v,S_w\} \text{ is a set of mutually commuting observables}$
 - $S_u + S_v + S_w = 2I \implies v(S_u) + v(S_v) + v(S_w) = 2.$

Find a set of vectors in \mathbb{R}^3 for which it is impossible to assign "0" and "1" (outcomes of observables S_v) so that in each set of three mutually orthogonal vectors "1" is assigned to exactly two of them.

Find a set of vectors in \mathbb{R}^3 for which it is impossible to assign "0" and "1" (outcomes of observables S_v) so that in each set of three mutually orthogonal vectors "1" is assigned to exactly two of them.

 Kochen and Specker (1967) found the required set with 117 vectors

Find a set of vectors in \mathbb{R}^3 for which it is impossible to assign "0" and "1" (outcomes of observables S_v) so that in each set of three mutually orthogonal vectors "1" is assigned to exactly two of them.

- Kochen and Specker (1967) found the required set with 117 vectors
- 2 Later Conway and Kochen reduced the set to 31 vectors

Find a set of vectors in \mathbb{R}^3 for which it is impossible to assign "0" and "1" (outcomes of observables S_v) so that in each set of three mutually orthogonal vectors "1" is assigned to exactly two of them.

- Kochen and Specker (1967) found the required set with 117 vectors
- 2 Later Conway and Kochen reduced the set to 31 vectors
- Peres (1991) found the required set with 33 vectors (with nice symmetries)

Magic configuration

Although it is not obvious, this set satisfies the required property.

M.C.Escher "Waterfall"

Magic star

Kochen-Specker game

Setting of the game

• Alice and Bob plays against verifier

Setting of the game

- Alice and Bob plays against verifier
- No communication between Alice and Bob after the input from verifier is received

Setting of the game

- Alice and Bob plays against verifier
- No communication between Alice and Bob after the input from verifier is received

As always we will see that entanglement turns out to be the key trick in quantum strategy.

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^3 from some proof of KS theorem (e.g. three superimposed cubes).

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^3 from some proof of KS theorem (e.g. three superimposed cubes).

- Verifier chooses three mutually orthogonal vectors v_i, v_j, v_k from the set V. He asks
 - Alice to assign "0" or "1" to each of these vectors
 - Bob to assign "0" or "1" to a vector $v_l \in \{v_i, v_j, v_k\}$

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^3 from some proof of KS theorem

- (e.g. three superimposed cubes).
 - Verifier chooses three mutually orthogonal vectors v_i, v_j, v_k from the set V. He asks
 - \bullet Alice to assign "0" or "1" to each of these vectors
 - Bob to assign "0" or "1" to a vector $v_l \in \{v_i, v_j, v_k\}$
 - Alice and Bob win if
 - Parity rule: "1" gets assigned to exactly two of the three vectors
 - Consistency rule: Alice and Bob assigns the same values to vector \boldsymbol{v}_l

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^3 from some proof of KS theorem

- (e.g. three superimposed cubes).
 - Verifier chooses three mutually orthogonal vectors v_i, v_j, v_k from the set V. He asks
 - Alice to assign "0" or "1" to each of these vectors
 - Bob to assign "0" or "1" to a vector $v_l \in \{v_i, v_j, v_k\}$
 - Alice and Bob win if
 - Parity rule: "1" gets assigned to exactly two of the three vectors
 - Consistency rule: Alice and Bob assigns the same values to vector \boldsymbol{v}_l
 - Alice and Bob cannot always win if they use classical strategy as this would lead to violation of KS theorem.

Kochen-Specker game

Rules of Kochen-Specker game

Let V be the set of vectors in \mathbb{R}^3 from some proof of KS theorem

- (e.g. three superimposed cubes).
 - Verifier chooses three mutually orthogonal vectors v_i, v_j, v_k from the set V. He asks
 - Alice to assign "0" or "1" to each of these vectors
 - Bob to assign "0" or "1" to a vector $v_l \in \{v_i, v_j, v_k\}$
 - Alice and Bob win if
 - Parity rule: "1" gets assigned to exactly two of the three vectors
 - Consistency rule: Alice and Bob assigns the same values to vector \boldsymbol{v}_l
 - Alice and Bob cannot always win if they use classical strategy as this would lead to violation of KS theorem.
 - Yet they can win using quantum strategy with entanglement.

Quantum strategy for KS game

Alice and Bob share the state $|\Psi\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |11\rangle + |22\rangle).$

- Alice measures her qutrit with POVM $\{|v_i\rangle \langle v_i|, |v_j\rangle \langle v_j|, |v_k\rangle \langle v_k|\}$. She assigns "0" to the vector corresponding to the outcome of her measurement and "1" to the rest two vectors.
- **2** Bob measures with POVM $\{|v_l\rangle \langle v_l|, I |v_l\rangle \langle v_l|\}$. He assigns "0" to vector v_l if the state collapses to $|v_l\rangle$ and "1" if otherwise.

Quantum strategy for KS game

Alice and Bob share the state $|\Psi\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |11\rangle + |22\rangle).$

- Alice measures her qutrit with POVM $\{|v_i\rangle \langle v_i|, |v_j\rangle \langle v_j|, |v_k\rangle \langle v_k|\}$. She assigns "0" to the vector corresponding to the outcome of her measurement and "1" to the rest two vectors.
- **2** Bob measures with POVM $\{|v_l\rangle \langle v_l|, I |v_l\rangle \langle v_l|\}$. He assigns "0" to vector v_l if the state collapses to $|v_l\rangle$ and "1" if otherwise.

We need to check whether parity and consistency rules are always satisfied.

In a Hilbert space of dimension \geq 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a Hilbert space of dimension \geq 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

In a Hilbert space of dimension \geq 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

• 4 dimensional Hilbert space corresponds to two qubit system

In a Hilbert space of dimension \geq 4 there is a set of observables for which it is impossible to assign outcomes in a way consistent with quantum mechanics formalism.

- 4 dimensional Hilbert space corresponds to two qubit system
- Again we will construct a set of observables that satisfy some functional identities that cannot be satisfied by the values assigned to them.

	Х	Y	Ζ	-I	-I	-I	
Х	Ι	iZ	-iY	I⊗Z	Z⊗I	Z⊗Z	Ι
Y	-iZ	Ι	iX	X⊗I	I⊗X	X⊗X	Ι
Z	iY	-iX	Ι	-X⊗Z	-Z⊗X	Y⊗Y	Ι

Multiplication of Pauli matrices.

Magic square.

• Observables on each row and column are mutually commuting.

	Х	Y	Ζ	-I	-I	-I	
Х	Ι	iZ	-iY	I⊗Z	Z⊗I	Z⊗Z	Ι
Y	-iZ	Ι	iX	X⊗I	I⊗X	X⊗X	Ι
Z	iY	-iX	Ι	-X⊗Z	−Z⊗X	Y⊗Y	Ι

Multiplication of Pauli matrices.

Magic square.

- Observables on each row and column are mutually commuting.
- It is impossible to fill in the outcomes of observables so that functional identities are satisfied.

Introduction	Kochen-Specker game Magic square			Magic sta		
Game						
	ce to fill in some row and with "1" or "-1"	l Bob to	-I	-I	-I	
			I⊗Z	Z⊗I	Z⊗Z	Ι
			X⊗I	I⊗X	X⊗X	I
			-X⊗Z	-Z⊗X	Y⊗Y	I

Introduction	Kochen-Specker game	Magic square		Magi	
Game					
	ce to fill in some row and B n with "1" or "-1"	ob toI	-I	-I	1
 Alice and Bob w 		I⊗Z	Z⊗I	Z⊗Z	I
and odd for	The parity of "-1" is even for Alice r Bob y rule Alice and Bob assign the same e intersection	X⊗I	I⊗X	X⊗X	I
			-Z⊗X	Y⊗Y	I
			<u> </u>	<u> </u>	

Introduction	Kochen-Specker game	Magic square		Magi	
Game					
	s Alice to fill in some row and Bo lumn with "1" or "-1"	ob toI	-I	-I	1
• Alice and B		I⊗Z	Z⊗I	Z⊗Z	I
 Parity rule The parity of "-1" is even for A and odd for Bob Consistency rule Alice and Bob assign the 	X⊗I	I⊗X	X⊗X	I	
	o the intersection	-X⊗Z	-Z⊗X	Y⊗Y	I
• There is no	perfect classical strategy.]

		.			
Game					
	Alice to fill in some row and B mn with "1" or "-1"	ob toI	-I	-I	
	 ice and Bob win if Parity rule The parity of "-1" is even for Alice and odd for Bob Consistency rule Alice and Bob assign the same 	I⊗Z	Z⊗I	Z⊗Z	Ι
and odd f		X⊗I	I⊗X	X⊗X	Ι
value to the intersectionThere is no perfect classical strategy.			$z = -Z \otimes X$	Y⊗Y	Ι
Quantum st					
• Alice a	nd Bob share $ \Psi angle = \left(rac{1}{\sqrt{2}}(00 angle$	$+ 11\rangle)\Big)^{\otimes 2}$			

Game					
• Verifier asks Alice to fill in some row and Bob to fill some column with "1" or "-1"	-I				
 Alice and Bob win if Parity rule The parity of "-1" is even for Alice 	I⊗Z	Z⊗I	Z⊗Z	Ι	
 and odd for Bob Consistency rule Alice and Bob assign the same 	X⊗I	I⊗X	X⊗X	Ι	
value to the intersection There is no perfect classical strategy. 	-X⊗Z	-Z⊗X	Y⊗Y	Ι	
Quantum strategy					
 Alice and Bob share Ψ⟩ = (¹/_{√2}(00⟩ + 11⟩))^{⊗2} Alice (Bob) measures her part of Ψ⟩ with the observables on the corresponding row (column) and gives verifier the outcomes of her measurement. 					

Introduction	Kochen-Specker game	Magic square		Magio		
Game						
	Alice to fill in some row a umn with "1" or "-1"	and Bob to _	I –I	-I		
 Alice and Bo 	b win if	Iø	Z Z⊗I	Z⊗Z	Ι	
 Parity rule The parity of "-1" is even for Alice and odd for Bob Consistency rule Alice and Bob assign the same 		X	⊗I I⊗X	X⊗X	Ι	
value to	the intersection	-X	$\otimes Z = Z \otimes X$	Y⊗Y	Ι	
• There is no	• There is no perfect classical strategy.					
Quantum s	trategy					
• Alice and Bob share $ \Psi angle = \left(rac{1}{\sqrt{2}}(00 angle + 11 angle) ight)^{\otimes 2}$						
 Alice the co 	• Alice (Bob) measures her part of $ \Psi\rangle$ with the observables on the corresponding row (column) and gives verifier the outcomes of her measurement.					
We have to	o check whether parity and	d consistency rule	s hold.			

Consistency rule verification

• Let $\mathcal{B} = \{|b_1\rangle, |b_2\rangle, |b_3\rangle, |b_4\rangle\}$ be a basis of Alice's state space (2 qubits) and $\overline{\mathcal{B}} = \{|b_1\rangle, \overline{|b_2\rangle}, \overline{|b_3\rangle}, \overline{|b_4\rangle}\}$ be a basis of Bob's state space.

Consistency rule verification

- Let $\mathcal{B} = \{|b_1\rangle, |b_2\rangle, |b_3\rangle, |b_4\rangle\}$ be a basis of Alice's state space (2 qubits) and $\overline{\mathcal{B}} = \{|b_1\rangle, \overline{|b_2\rangle}, \overline{|b_3\rangle}, \overline{|b_4\rangle}\}$ be a basis of Bob's state space.
- It turns out that $|\Psi\rangle = \left(\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\right)^{\otimes 2}$ in these basis can be written as:

$$\left|\Psi\right\rangle = \frac{1}{4} \left(\left|b_{1}\right\rangle \overline{\left|b_{1}\right\rangle} + \left|b_{2}\right\rangle \overline{\left|b_{2}\right\rangle} + \left|b_{3}\right\rangle \overline{\left|b_{3}\right\rangle} + \left|b_{4}\right\rangle \overline{\left|b_{4}\right\rangle}\right)$$

Consistency rule verification

- Let $\mathcal{B} = \{|b_1\rangle, |b_2\rangle, |b_3\rangle, |b_4\rangle\}$ be a basis of Alice's state space (2 qubits) and $\overline{\mathcal{B}} = \{|\overline{b_1}\rangle, |\overline{b_2}\rangle, |\overline{b_3}\rangle, |\overline{b_4}\rangle\}$ be a basis of Bob's state space.
- It turns out that $|\Psi\rangle = \left(\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\right)^{\otimes 2}$ in these basis can be written as:

$$|\Psi\rangle = \frac{1}{4} \left(|b_1\rangle \,\overline{|b_1\rangle} + |b_2\rangle \,\overline{|b_2\rangle} + |b_3\rangle \,\overline{|b_3\rangle} + |b_4\rangle \,\overline{|b_4\rangle} \right)$$

• Also it can be shown that the eigenvectors of observables being measured are real, therefore $\mathcal{B} = \overline{\mathcal{B}}$ and Bob will get the same outcome as Alice.

Magic star

- David N. Mermin, Hidden variables and the two theorems of John Bell Reviews of Modern Physics, 1993
- R. Cleve, P. Hoyer, B. Toner, J. Watrous, Consequences and Limits of Nonlocal Strategies, IEEE, 2004
- P. K. Aravind, A Simple Demonstration of Bell's Theorem Involving Two Observers and no Probabilities or Inequalities, 2002